Micro-tearing modes in the mega ampere spherical tokamak
نویسندگان
چکیده
Recent gyrokinetic stability calculations have revealed that the spherical tokamak is susceptible to tearing parity instabilities with length scales of a few ion Larmor radii perpendicular to the magnetic field lines. Here we investigate this ‘micro-tearing’ mode in greater detail to uncover its key characteristics and compare it with existing theoretical models of the phenomenon. This has been accomplished using a full numerical solution of the linear gyrokinetic–Maxwell equations. Importantly, the instability is found to be driven by the free energy in the electron temperature gradient as described in the literature. However, our calculations suggest it is not substantially affected by either of the destabilizing mechanisms proposed in previous theoretical models. Instead the instability is destabilized by interactions with magnetic drifts and the electrostatic potential. Further calculations reveal that the mode is not significantly destabilized by the flux surface shaping or the large trapped particle fraction present in the spherical tokamak. Its prevalence in spherical tokamak plasmas is primarily due to the higher value of plasma β and the enhanced magnetic drifts due to the smaller radius of curvature. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
A modulation model for mode splitting of magnetic perturbations in the Mega Ampere Spherical Tokamak
Recent observations of magnetic fluctuation activity in the Mega Ampere Spherical Tokamak (MAST) reveal the presence of plasmas with bands of both low and high frequency magnetic fluctuations. Such plasmas exhibit a spectrum of low frequency modes with adjacent toroidal mode numbers, for which the measured frequency is near the Doppler shifted rotation frequency of the plasma. These are thought...
متن کاملPoloidal mode analysis of magnetic probe data in a spherical tokamak configuration.
A method to determine the poloidal mode number m in a spherical tokamak based on magnetic probe data was developed. Perturbed magnetic fields at Mirnov coils are calculated for distributed helical filamentary currents on rational surfaces assuming the maximum current amplitude, m and n (toroidal mode number), and the toroidal location of the filaments. These free parameters were determined from...
متن کاملUsing Bayesian analysis and Gaussian processes to infer electron temperature and density profiles on the Mega-Ampere Spherical Tokamak experiment.
A unified, Bayesian inference of midplane electron temperature and density profiles using both Thomson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate ...
متن کاملIon acceleration during reconnection in MAST.
Spontaneous acceleration of ions to suprathermal energies is observed during magnetic reconnection in the Mega-Ampere Spherical Tokamak (MAST). A high-energy tail is observed in the ion-distribution function following each internal reconnection event in Ohmic discharges. This phenomenon is explained in terms of runaway ion acceleration in the electric field induced by the reconnection.
متن کاملMagnetic reconnection triggering magnetohydrodynamic instabilities during a sawtooth crash in a Tokamak plasma.
Thomson scattering measurements with subcentimeter spatial resolution have been made during a sawtooth crash in a Mega Ampere Spherical Tokamak fusion plasma. The unparalleled resolution of the temperature profile has shed new light on the mechanisms that underlie the sawtooth. As magnetic reconnection occurs, the temperature gradient at the island boundary increases. The increased local temper...
متن کامل